miércoles, 27 de octubre de 2010

Parábola (matemática)


Secciones cónicas.

La trayectoria de una pelota que rebota es una sucesión de parábolas.
En matemática, la parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano paralelo a su generatriz.[1]
Se define también como el lugar geométrico de los puntos que equidistan de una recta (eje o directriz) y un punto fijo llamado foco.
En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad.


[editar] Historia

La tradición reza que las secciones cónicas fueron descubiertas por Menecmo en su estudio del problema de la duplicación del cubo,[2] donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes.[3]
Sin embargo, el primero en usar el término parábola fue Apolonio de Perge en su tratado Cónicas,[4] considerada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio de las tangentes a secciones cónicas.
Si un cono es cortado por un plano a través de su eje, y también es cortado por otro plano que corte la base del cono en una línea recta perpendicular a la base del triángulo axial, y si adicionalmente el diámetro de la sección es paralelo a un lado del triángulo axial, entonces cualquier línea recta que se dibuje desde la sección de un cono a su diámetro paralelo a la sección común del plano cortante y una de las bases del cono, será igual en cuadrado al rectángulo contenido por la línea recta cortada por ella en el diámetro que inicia del vértice de la sección y por otra línea recta que está en razón a la línea recta entre el ángulo del cono y el vértice de la sección que el cuadrado en la base del triángulo axial tiene al rectángulo contenido por los dos lados restantes del triángulo. Y tal sección será llamada una parábola
Es Apolonio quien menciona que un espejo parabólico refleja de forma paralela los rayos emitidos desde su foco, propiedad usada hoy en día en las antenas satelitales. La parábola también fue estudiada por Arquímedes, nuevamente en la búsqueda de una solución para un problema famoso: la cuadratura del círculo, dando como resultado el libro Sobre la cuadratura de la parábola.

[editar] Propiedades geométricas


Diferentes elementos de una parábola.

Diagrama que muestra la propiedad reflexiva, la directriz (verde), y las líneas que unen el foco y la directriz de la parábola (azul).
Aunque la definición original de la parábola es la relativa a la sección de un cono recto por un plano paralelo a su directriz, actualmente es más común definir la parábola como un lugar geométrico:
Una parábola es el lugar geométrico de los puntos equidistantes de una recta dada, llamada directriz, y un punto fijo que se denomina foco.
De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario.
De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto de intersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como Distancia focal o Radio focal.

Los puntos de la parábola están a la misma distancia del foco F y de la recta directriz.


Construcción de puntos en una parábola.

[editar] Lado recto


El lado recto mide 4 veces la distancia focal
Al segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto.
La longitud del lado recto es siempre 4 veces la distancia focal.
Siendo D, E los extremos del lado recto y T, U las respectivas proyecciones sobre la directriz, denotando por W la proyección del foco F sobre la directriz, se observa que FEUW y DFWT son cuadrados, y sus lados miden FW=2FV. Por tanto el segmento DE es igual a 4 veces el segmento FV (la distancia focal).
Las tangentes a la parábola que pasan por los extremos del lado recto forman ángulos de 45° con el mismo, consecuencia de que FEUW y DFWT sean cuadrados, junto con la construcción mencionada en la sección anterior. Además, tales tangentes se cortan en la directriz de forma perpendicular, precisamente en el punto de proyección W del foco, propiedades que pueden ser aprovechadas para construir una aproximación geométrica del foco y la directriz cuando éstos son desconocidos.

[editar] Semejanza de todas las parábolas


Todas las parábolas son semejantes, es únicamente la escala la que crea la apariencia de que tienen formas diferentes.
Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad e = 1. La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.
Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.
Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.

[editar] Tangentes a la parábola


La tangente bisecta el ángulo entre el foco, el punto de tangencia y su proyección.
Un resultado importante en relación a las tangentes de una parábola establece:
La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.
En lo sucesivo, F denotará el foco de una parábola, P un punto de la misma y T su proyección sobre la directriz. Retomando la construcción dada para encontrar puntos de una parábola, sea MP la mediatriz del triángulo FPT, el cual es isósceles y por tanto biseca al ángulo FPT. Lo único que hay que verificar ahora es que MP también es la tangente en el punto P. Sea Q otro punto de la parábola y sea U su proyección en la directriz.
Puesto que FQ=QU y QU<QT, entonces FQ<QT. Dado que esto es cierto para cualquier otro punto de la parábola, se concluye que toda la parábola está de un mismo lado de MP, y como la desigualdad es estricta, no hay otro punto de la parábola que toque a la recta MP, esto quiere decir que MP es la tangente de la parábola en P.

[editar] Aplicaciones prácticas

Una consecuencia de gran importancia es que la tangente refleja los rayos paralelos al eje de la parábola en dirección al foco. Las aplicaciones prácticas son muchas: las antenas satelitales y radiotelescopios aprovechan el principio concentrando señales recibidas desde un emisor lejano en un receptor colocado en la posición del foco.
La concentración de la radiación solar en un punto, mediante un reflector parabólico tiene su aplicación en pequeñas cocinas solares y grandes centrales captadoras de energía solar.
Análogamente, una fuente emisora situada en el foco, enviará un haz de rayos paralelos al eje: diversas lámparas y faros tienen espejos con superficies parabólicas reflectantes para poder enviar haces de luz paralelos emanados de una fuente en posición focal. Los rayos convergen o divergen si el emisor se desplaza de la posición focal.




[editar] Ecuaciones de la parábola


Parábolas tipo y=ax2, con a=4, 1, 1/4 y 1/10.

Prueba geométrica de la relación y=ax2.
Con el advenimiento de la geometría analítica se inició un estudio de las formas geométricas basado en ecuaciones y coordenadas.
Una parábola cuyo vértice está en el origen y su eje coincide con el eje de las ordenadas, tiene una ecuación de la forma y=ax2 donde el parámetro a especifica la escala de la parábola, incorrectamente descrita como la forma de la parábola, ya que como se dijo antes, todas las parábolas tienen la misma forma. Cuando el parámetro es positivo, la parábola se abre «hacia arriba» y cuando es negativo se abre «hacia abajo».
Si bien, la expresión en forma de ecuación no fue posible hasta el desarrollo de la geometría analítica, la relación geométrica expresada en la ecuación anterior ya estaba presente en los trabajos de Apolonio,[2] y se bosquejará a continuación usando notación moderna.
Tomando nuevamente la definición de parábola como sección de un cono recto de forma paralela a la directriz, sea V un punto en el eje y sea QV perpendicular al eje. (QV corresponde al valor x en la versión analítica y PV al valor y). Considerando la sección circular que pasa por Q y es paralela a la base del cono, obtenemos H, K paralelos a B y C.
Por el teorema de potencia de un punto:
QV^2 = HV\cdot VK.
Al ser PM paralela a AC, los triángulos HVP, HKA y BCA son semejantes y así:
\frac{HV}{PV} = \frac{HK}{KA}  = \frac{BC}{AC}.
Usando nuevamente los paralelismos:
\frac{VK}{PA} = \frac{HK}{HA} = \frac{BC}{BA}.
Despejando HV y VK para sustituir en la fórmula de QV² resulta en
QV^2=HV\cdot VK=\left(\frac{BC\cdot PV}{AC}\right)\left(\frac{BC\cdot PA}{BA}\right) = \left(\frac{BC^2\cdot PA}{BA\cdot AC}\right)PV.
Pero el valor de \left(\frac{BC^2\cdot PA}{BA\cdot AC}\right) es una constante pues no depende de la posición de V, por lo que haciendo
 a = \frac{BA\cdot AC}{BC^2\cdot PA},
arroja la expresión moderna y=ax².

Parábolas verticales, con ecuaciones de la forma y=ax²+bx+c.
Aplicando una sustitución de coordenadas podemos obtener ahora la ecuación de una parábola vertical para cualquier posición de su vértice.
La ecuación de una parábola cuyo eje es vertical y su vértice es (u,v) tiene la forma (y-v)=a(x-u)2,
agrupando los términos y reordenando se obtiene una forma equivalente:
La ecuación de una parábola cuyo eje es vertical es de la forma y = a x^2 + bx + c \,.
Si la parábola es horizontal, se obtienen ecuaciones similares pero intercambiando y por x y viceversa. Así tendríamos:
La ecuación de una parábola cuyo eje es horizontal es de la forma x = a y^2 + by + c \,.

[editar] Ecuación involucrando la distancia focal


Ecuación de una parábola vertical.
Pueden haber muchas parábolas que tengan un mismo vértice (variando el parámetro a) en la primera ecuación. Sin embargo, dados dos puntos fijos, existe sólo una parábola que los tiene por vértice y foco ya que la directriz queda automáticamente fija como la perpendicular a la línea que une el foco con el vértice y a esa misma distancia del último.
Consideremos el caso especial en que el vértice es (0,0) y el foco es (0,p). La directriz es por tanto, la recta horizontal que pasa por (0,-p). A la distancia entre el vértice y el foco se le llama distancia focal, de modo que en este caso la distancia focal es igual a p. Con esta configuración se tiene:
La ecuación de una parábola con vértice en (0,0) y foco en (0,p) es \,x^2=4py.
De forma alterna:
La ecuación de una parábola con vértice en (0,0) y foco en (0,p) es y=\frac{x^2}{4p}.
Es de notar que el coeficiente 4p es precisamente la longitud del lado recto de la parábola.
Ambas ecuaciones se refieren a parábolas verticales que se abren «hacia arriba». La ecuación de una parábola que se abre hacia abajo es similar excepto que varía un signo. En este caso, el foco sería (0,-p) y de esta forma:
La ecuación de una parábola con vértice en (0,0) y foco en (0,-p) es \,x^2=-4py.
Cuando la parábola es horizontal «hacia la derecha», se obtiene una ecuación similar intercambiando los roles de x, y:
La ecuación de una parábola con vértice en (0,0) y foco en (p,0) es \,y^2=4px,
obteniendo mediante un cambio de signo la ecuación de las parábolas hacia la izquierda.
Finalmente, las ecuaciones cuando el vértice no está en el centro se obtienen mediante una traslación. En el caso común de la parábola vertical hacia arriba se tiene
La ecuación de una parábola con vértice en (h, k) y foco en (h, k+p) es \,(x-h)^2=4p(y-k),
mientras que para la parábola horizontal se intercambia x con y:.
La ecuación de una parábola con vértice en (h, k) y foco en (h+p, k) es \,(y-k)^2=4p(x-h).

[editar] Ecuación general de una parábola

Hasta ahora se han descrito parábolas con sus ejes paralelos a alguno de los ejes de coordenadas. De esta forma las fórmulas son funciones de x ó de y. Pero una parábola puede tener su eje inclinado con respecto a un par de ejes de coordenadas ortogonales.






La expresión algebraica que describe una parábola que ocupe cualquier posición en un plano es:
\,a x^2 + b xy + c y^2 + d x + e y + f = 0
si y sólo si
\, b^2 - 4ac = 0
y los coeficientes a y c no pueden ser simultáneamente nulos
Mediante traslaciones y rotaciones es posible hallar un sistema de referencia en el que la ecuación anterior se exprese mediante una fórmula algebraica de la forma
\,a x'^2 + b x' + c = 0 , donde a es distinto de cero


ahora lo bemos en video

Recta

.
Representación de un segmento de recta.
Tres líneas rectas — Las líneas roja y azul poseen la misma pendiente (m) que en este ejemplo es ½, mientras que las líneas roja y verde interceptan al eje y en el mismo punto, por lo que poseen idéntico valor de ordenada al origen (b) que en este ejemplo es el punto x=0, y=1.
En geometría euclidiana, la recta o línea recta, es el ente ideal que se extiende en una misma dirección, existe en una sola dimensión y contiene infinitos puntos; está compuesta de infinitos segmentos (el fragmento de línea más corto que une dos puntos). También se describe como la sucesión continua e indefinida de puntos en una sola dimensión, o sea, no posee principio ni fin.
Es uno de los entes geométricos fundamentales, junto al punto y el plano. Son considerados conceptos apriorísticos ya que su definición sólo es posible a partir de la descripción de las características de otros elementos similares. Así, es posible elaborar definiciones basándose en los Postulados característicos que determinan relaciones entre los entes fundamentales. Las rectas se suelen denominar con una letra minúscula.
Las líneas rectas pueden ser expresadas mediante una ecuación del tipo y = m x + b, donde x e y son variables en un plano. En dicha expresión m es denominada la "pendiente de la recta" y está relacionada con la inclinación que toma la recta respecto a un par de ejes que definen el plano. Mientras que b es el denominado "término independiente" u "ordenada al origen" y es el valor del punto en el cual la recta corta al eje vertical en el plano.

[editar] Definiciones y postulados de Euclides relacionados con la recta

Euclides, en su tratado denominado Los Elementos,[1] establece varias definiciones relacionadas con la línea y la línea recta:
  • Una línea es una longitud sin anchura (Libro I, definición 2).
  • Los extremos de una línea son puntos (Libro I, definición 3).
  • Una línea recta es aquella que yace por igual respecto de los puntos que están en ella (Libro I, definición 4).
También estableció dos postulados relacionados con la línea recta:
  • Por dos puntos diferentes sólo pasa una línea recta (Libro I, postulado 1).
  • Si una recta secante corta a dos rectas formando a un lado ángulos interiores, la suma de los cuales es menor que dos ángulos rectos: las dos rectas, suficientemente alargadas, se cortarán en el mismo lado (Libro I, quinto postulado).

[editar] Características de la recta

Algunas de las características de la recta son las siguientes:
  • La recta se prolonga al infinito en ambos sentidos.
  • La distancia más corta entre dos puntos está en una línea recta, en la geometría euclidiana.
  • La recta es un conjunto de puntos situados a lo largo de la intersección de dos planos.

[editar] Geometría analítica de la recta en el plano

La Geometría analítica consiste en emplear operaciones de cálculo para resolver problemas de geometría. En un plano, podemos representar una recta mediante una ecuación, y determinar los valores que cumplan determinadas condiciones, por ejemplo, las de un problema de geometría.

[editar] Ecuación de la recta

En una recta, la pendiente m\, es siempre constante. Se calcula mediante la ecuación: m = \left( \frac{y_2 - y_1}{x_2 - x_1} \right)
Se puede obtener la ecuación de la recta a partir de la fórmula de la pendiente (ecuación punto-pendiente):
y - y_1 = m (x - x_1)\!

Esta forma de obtener la ecuación de una recta se suele utilizar cuando se conocen su pendiente y las coordenadas de uno de sus puntos, o cuando se conocen sólo los dos puntos, por lo que también se le llama ecuación de la recta conocidos dos puntos, y se le debe a Jean Baptiste Biot. La pendiente m es la tangente de la recta con el eje de abscisas X.
La ecuación de la recta que pasa por el punto P1 = (x1,y1) y tiene la pendiente dada m es:
y - y_1 = m (x - x_1)\,
Ejemplo
Hallar la ecuación de la recta que pasa por el punto A (2, − 4) y que tiene una pendiente de − 1 / 3.
Al sustituir los datos en la ecuación, resulta lo siguiente:
y - y_1 = m (x - x_1)\! y - ( - 4) = - 1/3 (x - 2)\!
3 (y + 4) = - 1(x - 2)\!
3y + 12 = - x + 2\!
x + 3y + 12 = 2\!
x + 3y + 10 = 0\!

[editar] Forma simplificada de la ecuación de la recta

Si se conoce la pendiente m, y el punto donde la recta corta al eje de ordenadas es (0, b), podemos deducir, partiendo de la ecuación general de la recta, yy1 = m(xx1):
y - b = m (x - 0)\! y - b = m x \!
y = m x + b \!
Esta es la segunda forma de la ecuación de la recta y se utiliza cuando se conoce la pendiente y la ordenada al origen, que llamaremos b. También se puede utilizar esta ecuación para conocer la pendiente y la ordenada al origen a partir de una ecuación dada.

[editar] Forma segmentaria de la ecuación de la recta (Ecuación simétrica)

Así como a la ordenada al origen se le puede llamar b, a la abscisa al origen se le puede llamar a. Si se plantea como problema encontrar la ecuación de una recta, conocidos a y b (la abscisa y ordenada al origen), se conocen dos puntos de la recta los cuales son los siguientes:
 (0, b)\! y (a, 0)\!
Con estos puntos se puede encontrar dicha ecuación, pero primero se debe calcular la pendiente:
m = \left( \frac{0 - b}{a - 0} \right) = \frac{-b}{a}
Después se sustituye en la ecuación yy1 = m(xx1), usando cualquiera de los dos puntos, en este caso (a, 0):
y - 0 = - \frac {b}{a}(x - a)
 ay = - bx + ab\!
 bx + ay = ab\!
Por último se tiene que dividir toda la ecuación entre el término independiente ab:
\frac{bx}{ab} + \frac{ay}{ab} = \frac{ab}{ab}\!

\frac{x}{a} + \frac{y}{b} = 1 \!
Se obtiene la ecuación de la recta en su forma simétrica. Esta ecuación se suele utilizar para obtener la ecuación de una recta de la que se conocen sus intersecciones con los ejes y cuando, a partir de la ecuación de una recta, se desean conocer los puntos donde dicha recta interseca a los ejes.

[editar] Ecuación Normal de la recta (Primera forma; Ecuación de Hesse)

Ludwig Otto Hesse ((1811-1874) Matemático alemán. Prof. en la Univ. de Heidelberg y en el Politécnico de Munich.)
Esta es la forma normal de la recta:
x cos\omega + y sen\omega - d = 0 \!
Siendo d el valor de la distancia entre la recta y el origen de coordenadas. y el ángulo omega ω es el formado entre la recta y el eje de las ordenadas.


Donde k que es una constante que nos ayudará a obtener la forma normal, la cual se puede obtener de la forma general de la recta.

Ax + By + C = 0 \!

Sacando raiz cuadrada a la suma de los cuadrados de A y B . Como sigue:

k = \sqrt{A^2 + B^2}

Con el número k podemos obtener a cosω y a senω de la misma ecuación general de la recta, dividiendo a A y B entre k y para calcular p dividimos a C entre k.

Debemos tener cuidado al calcular C, por que C=-kp, entonces si C>0 (es positiva) tomaremos el valor negativo de k (y será el mismo todas las veces que usemos a k en la misma ecuación), cuando C<0 (es negativa) usaremos el valor positivo de k.[2]

[editar] Ecuación Normal de la recta (Segunda forma)

 \frac{Ax+By+C}\sqrt{A^2 + B^2}  = 0
Tomando el valor positivo o negativo de la raíz según corresponda.

[editar] La recta en coordenadas cartesianas

La recta en coordenadas cartesianas.png
La ecuación explícita de una recta en el plano, por ejemplo la recta r responde a la fórmula general:
y = m \cdot x + n
La ecuación anterior debe cumplirse en los puntos A y B, de modo que:
y_{A} = m \cdot x_{A} + n
y_{B} = m \cdot x_{B} + n
Resolviendo el sistema de ecuaciones:
m = \frac{y_{B} - y_{A}}{x_{B} - x_{A}}
n = \frac{y_{A} \cdot x_{B} - y_{B} \cdot x_{A}}{x_{B} - x_{A}}
  • m se denomina pendiente de la recta y su valor es el de la tangente del ángulo (α) que forma la recta con el eje x.
  • m es el resultado de dividir la diferencia ordenadas entre la diferencia de abscisas de un par de puntos cualesquiera de la recta.
  • n representa el punto de intersección de la recta con el eje Y (eje de ordenadas).

[editar] Rectas notables

  • La ecuación de una recta vertical, tal como la v, responde a la ecuación general x = xv (constante).
  • La ecuación de una recta horizontal, tal como la h, responde a la ecuación general y = yh (constante).
  • Una recta trigonoidal, tal como la s, que pase por el origen O (0, 0), cumplirá la condición n = 0, siendo su ecuación: y = (m)(x)\;.
  • Dos rectas cualesquiera:
 y = \left( m_1 \right)\left( x \right)+ n_1 \!
 y = \left( m_2 \right)\left( x \right)+ n_2 \!

serán paralelas si y solo si m_1 = m_2\;. Además, serán coincidentes cuando: n_1 = n_2\;
serán perpendiculares si y sólo si m_1 = -1/ m_2\;, es decir: (m_1)(m_2) = -1 \;

[editar] Rectas que pasan por un punto

FuncionLineal05.svg
Determinar las rectas del plano que pasan por el punto (x0,y0).
La ecuación de la recta ha de ser, como ya se sabe:
y = m x + b \,
Y ha de pasar por el punto (x0,y0), luego tendrá que cumplirse:
y_0 = m x_0 + b \,
Despejando b, tenemos esta ecuación:
 b= y_0 - m x_0 \,
Sustituyendo b en la ecuación general de la recta:
y = m x + (y_0 - m x_0) \,
Ordenando términos:
y = m (x- x_0) + y_0 \,
Esta ecuación define un haz de rectas en el plano que pasa por el punto (x0,y0), el valor de m es la pendiente de cada una de las rectas que forman parte del haz, m puede tomar un valor real cualesquiera.

Y ha de pasar por los puntos (x1,y1) y (x2,y2) luego tendrá que cumplirse
 y_{1} = m x_{1} + b \,
 y_{2} = m x_{2} + b \,
que forman un sistema de dos ecuaciones con dos incógnitas, las incógnitas son m y b, para resolver este sistema, cambiamos de signo a la segunda ecuación y sumando las dos ecuaciones:
y_1 - y_2 = m x_1 - m x_2 \,
agrupando términos:
y_1 - y_2 = m (x_1 - x_2) \,
despejando m:
m= \cfrac{y_1 - y_2}{x_1 - x_2} \,
este valor, m, es el de la pendiente de la recta que pasa por los dos puntos: (x1,y1) y (x2,y2).
Despejando ahora el valor de b de una de las ecuaciones del sistema, por ejemplo de la primera, tenemos:
b = y_1 - m x_1 \,
y sustituyendo m, por su valor ya calculado;
b = y_1 - \cfrac{y_1 - y_2}{x_1 - x_2} \; x_1 \,
Tenemos las dos incógnitas m y b despejadas, en función de las coordenadas de los dos puntos por los que tienen que pasar, la ecuación general de la recta, con los parámetros ya calculados es:
y = \cfrac{y_1 - y_2}{x_1 - x_2} \; x + y_1 - \cfrac{y_1 - y_2}{x_1 - x_2} \; x_1 \,

[editar] Rectas perpendiculares

FuncionLineal09.svg
Dada una recta:
y = m_1 x + b_1 \,
Se trata de determinar que rectas:
y = m x + b \,
son perpendiculares a la primera.
Sabiendo que:
 m_1 = \tan( \alpha ) \,
Siendo α el ángulo que forma la recta con la horizontal, cualquier recta perpendicular a ella ha de formar un ángulo (α + 90) con la horizontal, por trigonometría sabemos que:
 \tan ( \alpha + 90) = \frac{-1}{\tan(\alpha)}
y si la pendiente de la primera recta es:
 m_1 = \tan ( \alpha ) \,
la de la segunda debe de ser:
 m = \tan ( \alpha+ 90 ) = \frac{-1}{ m_1 } \,
Esto es, dada una recta cualquiera:
y = m_1 x + b_1 \,
cualquier recta de la forma:
y = \frac{-1}{ m_1 } x + b \,
Es perpendicular a la primera, para cualquier valor del parámetro b.
Es fácil percatarse que las ordenadas en el origen de las rectas, no intervienen para determinar las rectas perpendiculares, esto es porque la perpendicularidad es un problema de dirección, y los puntos por los que pasa la recta no influyen, si la primera recta la sustituimos por una paralela a ella, el problema no se altera en absoluto, y el resultado es un conjunto de rectas paralelas, definidas por la pendiente y no por el punto concreto por el que pasa.


ahora lo bemos en video

Elipse

De Wikipedia, la enciclopedia libre
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es una constante positiva.
Una elipse es la curva cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución.[1] Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.
ElipseAnimada.gif
ahora lo bemos en vide

[editar] Historia

Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).
La elipse, como curva geométrica, fue estudiada por Menaechmus, investigada por Euclides, y su nombre se atribuye a Apolonio de Perge. El foco y la directriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Kepler creía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor del Sol.[2]

[editar] Elementos de una elipse

Elementos de una elipse.
La elipse posee un «eje mayor», trazo AB (que equivale a  \,  {2a} ), y un «eje menor», trazo CD (que equivale a  \,  {2b} ); la mitad de cada uno de esos ejes recibe el nombre de «semieje», de tal manera que se los denomina «semieje mayor» y «semieje menor», respectivamente.
Sobre el «eje mayor» existen dos puntos  \,  {F_1} y  \,  {F_2} que se llaman «focos».
El punto  \,  {Q} es uno que pertenezca a la «elipse».

[editar] Puntos de una elipse

Si F1 y F2 son dos puntos del plano y d es una constante mayor que la distancia F1 F2, un punto Q pertenecerá a la elipse, si:
F_1 Q + F_2 Q = d = 2a \,
donde a\; es el semieje mayor de la elipse.

[editar] Ejes de una elipse

Eje mayor (2 a) es la distancia mayor entre dos puntos adversos. En la figura, longitud del segmento AB.
La medida a es la mitad del eje mayor, o sea es el semieje mayor. La distancia del centro de la elipse al punto A o al punto B.
El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor.
Obsérvese que d(AF2) + d (AF1) = d(AF2) + d (BF2)= AB
La medida b es la mitad del eje menor, o sea es el semieje menor, la distancia del centro al punto C o al punto D.

[editar] Excentricidad de una elipse

La excentricidad de una elipse es la razón entre su semidistancia focal (segmento que va del centro de la elipse a uno de sus focos), denominada por la letra 'c', y su semieje mayor. Su valor se encuentra entre cero y uno.
Elipse1.0.jpg
e=\frac{c}{a} , con (0 < e < 1)

Dado que c = \sqrt{a^2-b^2} , también vale la relación:

e=\sqrt{\frac{a^2-b^2}{a^2}}
    =\sqrt{1-\left(\frac{b}{a}\right)^2}
o el sistema:

\begin{cases}
e=\frac{c}{a}\\
c = \sqrt{a^2-b^2} \end{cases}
La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.[3]

[editar] Constante de la elipse

Ellipse Animation Small.gif
En una elipse, por definición, la suma de la longitud de ambos segmentos (azul + rojo) es una cantidad constante, la cual siempre será igual a la longitud del «eje mayor».
En la elipse de la imagen, la constante es 10. Equivale a la longitud medida desde el foco  \,  {F_1} al punto  \, {Q} (ubicado en cualquier lugar de la elipse) sumada a la longitud desde el foco  \, {F_2} a ese mismo punto  \, {Q} . (El segmento de color azul sumado al de color rojo).
El segmento correspondiente, tanto trazo  \,  {QF_1} (color azul), como al  \, {QF_2} (color rojo), se llaman «radio vector». Los dos «focos» equidistan del centro  \,  {0} . En la animación, el punto  \, Q recorre la elipse, y en él convergen ambos segmentos (azul y rojo).

[editar] Ecuaciones de la elipse

La ecuación de una elipse en coordenadas cartesianas, con centro en el origen, es:
\frac{x^2}{a^2}+\frac{y^2}{b^2} = 1
donde a > 0 y b > 0 son los semiejes de la elipse (a corresponde al eje de las abscisas, b al eje de las ordenadas). El origen O es la mitad del segmento [FF']. La distancia entre los focos FF' se llama distancia focal y vale 2c = 2ea, siendo e la excentricidad y a el semieje mayor.
Si el centro de la elipse se encuentra en el punto (x1, y1), la ecuación es:
\frac{(x-x_1)^2}{a^2}+\frac{(y-y_1)^2}{b^2} = 1
En coordenadas polares una elipse (centrada en uno de sus focos) viene definida por la ecuación:
\rho(\theta) = \frac{a(1-e^2)}{1+e\cos\theta}
También en coordenadas polares una elipse (con centro en el origen) viene definida por la ecuación:
 \rho(\theta)=\frac{1}{\sqrt{\frac{cos(\theta)^2 }{a^2 }+\frac{sin(\theta)^2}{b^2 } }}
La ecuación paramétrica de una elipse con centro en (h,k) es:
\begin{cases}
x = h+a\cos\theta\\
y = k+b\sin\theta \end{cases}
con \theta\in [0,2\pi), y donde el ángulo θ se puede interpretar como el ángulo polar.

[editar] Área interior de una elipse

El área de la superficie interior de una elipse es:
\acute{A} rea=\pi \cdot a \cdot b
Siendo a y b los semiejes.[4]

[editar] Longitud de una elipse

El cálculo del perímetro de una elipse requiere del cálculo de integrales elípticas de segunda especie.
Sin embargo, el matemático Ramanujan ideó una ecuación más simple que se aproxima razonablemente a la longitud de la elipse, pero en grado menor que la obtenida mediante integrales elípticas. Ramanujan, en su formula, entre otros valores utiliza el “semieje mayor” y el “semieje menor”. Ecuación de la longitud de una elipse:
P \approx \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)}\right]\!\,

[editar] Propiedades notables

La elipse goza de ciertas propiedades asociadas a sus componentes, como se puede ver en Analogía de Michelson y Morley.

[editar] La elipse como cónica

La elipse surge de la intersección de una superficie cónica con un plano, de tal manera que la inclinación del plano no supere la inclinación de la recta generatriz del cono, consiguiendo así que la intersección sea una curva cerrada. En otro caso el corte podría ser una hipérbola o una parábola. Es por ello que a todas estas figuras bidimensionales se las llama secciones cónicas o simplemente cónicas.
la elipse como conica.

[editar] La elipse como hipotrocoide

La elipse es un caso particular de hipotrocoide, donde R = 2r, siendo R el radio de la circumferencia directriz, y r el radio de la circunferencia generatriz.
En una curva hipotrocoide, la circunferencia que contiene al punto generatriz, gira tangencialmente por el interior de la circunferencia directriz.
La elipse como caso particular de hipotrocoide. Datos: R = 10, r = 5, d = 1.

[editar] Construcción paramétrica de una elipse

Se dibujan dos circunferencias concéntricas cuyos diámetros equivalen a la medida de los ejes ortogonales de la futura elipse. Si trazamos segmentos palalelos a los ejes principales X e Y, partiendo del extremo de los radios alineados, la intersección de dichos segmentos son puntos de la elipse.
Parametric ellipse.gif

[editar] Anamorfosis de un círculo en una elipse

Artículo principal: Anamorfosis
Cierta trasformación de la circunferencia (al deformar ortogonalmente el plano cartesiano asociado a ella), se denomina anamorfosis. Se corresponde a una perspectiva especial. El término anamorfosis proviene del idioma griego y significa trasformar.

Una circunferencia en un plano cartesiano no deformado.
Esta circunferencia se transforma en una elipse mediante una anamorfosis, donde el eje Y se ha contraído y el X se ha dilatado.
En el caso de la circunferencia, si el plano cartesiano se divide en cuadrados, cuando dicho plano se «deforma» en sentido del eje X, el Y, o ambos, la circunferencia se transforma en una elipse, y los cuadrados en rectángulos.

[editar] Elipses semejantes

Se dice que dos figuras son semejantes cuando se diferencian sólo en el tamaño (pero no en la forma), de tal manera que multiplicando todas las longitudes por un factor dado, se pasa de una figura a la otra. Hay un teorema de utilidad en Física [5] acerca de la intersección de una recta con dos elipses semejantes y concéntricas.
Teorema: Si la intersección de una recta con la corona comprendida entre dos elipses semejantes con iguales centro y ejes consta de dos segmentos, entonces éstos tienen igual longitud.
Demostración: El teorema es cierto, por simetría, en el caso particular en que las elipses dadas sean dos circunferencias concéntricas. Contrayendo o dilatando uniformemente una de las direcciones coordenadas, podemos transformar cualquier caso en este caso particular. Al contraer o dilatar uniformemente una de las direcciones coordenadas todos los segmentos con la misma pendiente cambian su longitud en la misma proporción. Por tanto, puesto que al final del proceso los dos segmentos de la recta tienen la misma longitud, la tenían ya al principio. QED.
No deben confundirse las elipses semejantes con las elipses cofocales.



ahora lo bemos en videoahora lo bemos en video